whatsapp +569 99410328 admin@grechile.com
 

grechile.com clases particulares GRE QUANT

Tu mejor alternativa para preparar tu GRE parte matemática desde cero.

Read more

Prepara tu GRE QUANT

En grechile.com te entrenamos en las mejores técnicas para que rindas con ventaja tu GRE MATH

Read more

grechile.com te invita: Es hora de la acción GRE QUANT

Nuestros cursos para 6 alumnos te entrenan en ejercicios típicos del GRE parte matemática

Read more

perfect square, GRE Quantitative Comparison Questions Clases particulares en Chile grechile.com, Complete perfect square x(4 – x)

GRE Quantitative Comparison Questions Clases particulares en Chile grechile.com

Quantity A
Quantity B
x(4 – x)
6

A) Quantity A is greater.
B) Quantity B is greater.
C) The two quantities are equal.
D) The relationship cannot be determined from the information given.

 

 

Clases particulares GRE QUANT and GRE SUBJECT MATH
En grechile.com, ofrecemos Programas para que rindas con ventaja tu GRE QUANT, enfocados en preguntas de alta puntuación.
Clases particulares GRE QUANT and GRE SUBJECT MATH, en todo CHILE.
Reserva con tiempo tus clases.
contacto: claudio hurtado
correo : admin@grechile.com
whatsapp +56999410328
sitio web: www.grechile.com

 

 

Answer: B

 

Resolución paso a paso:

Este es un ejercicio del item “comparision” del GRE QUANT.
Debemos prestar atención a ¿qué nos piden comparar?
Debemos comparar, el o los valores de x, con 6

Voy a convertir x (4 – x) en un cuadrado perfecto
Antes de hacer eso, aquí hay otros cuadrados perfectos:
X² + 6x + 9 = (x + 3) ²
X² – 10x + 25 = (x – 5) ²
X² – 4x + 4 = (x – 2) ²
Etc …

Dado: x (4 – x) = 4x – x²
= -x² + 4x
= -1 (x  ²  – 4x)

¿Qué necesitamos agregar a x² – 4x para que sea un cuadrado perfecto?
Necesitamos añadir 4 a ella para obtener x² – 4x + 4, que es igual a (x – 2) ²
Por supuesto, no podemos agregar aleatoriamente 4 a la expresión dada, ya que eso cambia totalmente la expresión.
En su lugar, vamos a añadir 0 a la expresión dada. Esto está bien, ya que agregar 0 no cambia nada.
SIN EMBARGO, vamos a añadir 0 de una manera muy especial. Vamos a añadir + 4 – 4 a la expresión.
Esto está bien, ya que agregar + 4 – 4 a la expresión es lo mismo que agregar 0 a la expresión.

Obtenemos: x (4 – x) = 4x – x²
= -x² + 4x
= -1 (x  ²  – 4x)
= -1 (x  ²  – 4x + 4 – 4)
= -1 (x² – 4x + 4) + 4 [para eliminar -4 de los corchetes, tuve que multiplicarlo por -1, ya que estamos multiplicando todo en los corchetes por -1]
= -1 (x – 2) ² + 4

Así pues, ahora podemos escribir lo siguiente:
Cantidad A: -1 (x – 2) ² + 4
Cantidad B: 6

En este punto, debemos reconocer que 4 es el mayor valor posible de -1 (x – 2) ² + 4
Sabemos esto, porque (x – 2) ² es siempre mayor o igual a 0
Por lo tanto, -1 (x – 2) ² es siempre menor o igual a 0
Por lo tanto, el mayor valor de -1 (x – 2) ² es 0. Esto ocurre cuando x = 2
Si 0 es el mayor valor posible de -1 (x – 2) ², entonces 4 es el mayor valor posible de -1 (x – 2) ² + 4

Entonces, tenemos:
Cantidad A: algún número menor o igual a 4
Cantidad B: 6

Respuesta correcta B) 

Clases particulares GRE QUANT and GRE SUBJECT MATH
En grechile.com, ofrecemos Programas para que rindas con ventaja tu GRE QUANT, enfocados en preguntas de alta puntuación.
Clases particulares GRE QUANT and GRE SUBJECT MATH, en todo CHILE.
Reserva con tiempo tus clases.
contacto: claudio hurtado
correo : admin@grechile.com
whatsapp +56999410328
sitio web: www.grechile.com

distance = speed*time, GRE Quantitative Comparison Questions Clases particulares en Chile grechile.com, The distance that Bob drives in 3 hours at an average speed of 44 miles per hour

GRE Quantitative Comparison Questions Clases particulares en Chile grechile.com

Quantity A
Quantity B
The distance
that Bob drives in
3 hours at an average
speed of 44 miles per
hour
The distance that Inez
drives in 2 hours and 30
minutes at an average
speed of 50 miles per
hour

A) Quantity A is greater.
B) Quantity B is greater.
C) The two quantities are equal.
D) The relationship cannot be determined from the information given.

 

 

 

Clases particulares GRE QUANT and GRE SUBJECT MATH
En grechile.com, ofrecemos Programas para que rindas con ventaja tu GRE QUANT, enfocados en preguntas de alta puntuación.
Clases particulares GRE QUANT and GRE SUBJECT MATH, en todo CHILE.
Reserva con tiempo tus clases.
contacto: claudio hurtado
correo : admin@grechile.com
whatsapp +56999410328
sitio web: www.grechile.com

 

 

Answer: A

 

Resolución paso a paso:

Este es un ejercicio del item “comparision” del GRE QUANT.
Debemos prestar atención a ¿qué nos piden comparar?
Debemos comparar, ambas distancias

Bob maneja 3 horas a una velocidad promedio de 44 millas por hora
Distancia = (velocidad) (tiempo)
= (44) (3)
= 132 millas

Inez maneja 2 horas y 30 minutos a una velocidad promedio de 50 millas por hora
Distancia = (velocidad) (tiempo)
= (50) (2,5)
= 125 millas

Obtenemos:
Cantidad A: 132 millas
Cantidad B: 125 millas

Respuesta correcta A) 

Clases particulares GRE QUANT and GRE SUBJECT MATH
En grechile.com, ofrecemos Programas para que rindas con ventaja tu GRE QUANT, enfocados en preguntas de alta puntuación.
Clases particulares GRE QUANT and GRE SUBJECT MATH, en todo CHILE.
Reserva con tiempo tus clases.
contacto: claudio hurtado
correo : admin@grechile.com
whatsapp +56999410328
sitio web: www.grechile.com

solved exercises GRE Quantitative Comparison Questions Clases particulares en Chile grechile.com, The difference between the greatest and least possible values of n

GRE Quantitative Comparison Questions Clases particulares en Chile grechile.com

n is an integer, and |2n + 7| ≤ 10.

Quantity A
Quantity B
The difference between the greatest and
least possible values of n
10

A) Quantity A is greater.
B) Quantity B is greater.
C) The two quantities are equal.
D) The relationship cannot be determined from the information given.

 

 

 

 

Clases particulares GRE QUANT and GRE SUBJECT MATH
En grechile.com, ofrecemos Programas para que rindas con ventaja tu GRE QUANT, enfocados en preguntas de alta puntuación.
Clases particulares GRE QUANT and GRE SUBJECT MATH, en todo CHILE.
Reserva con tiempo tus clases.
contacto: claudio hurtado
correo : admin@grechile.com
whatsapp +56999410328
sitio web: www.grechile.com

 

 

Answer: B

 

Resolución paso a paso:

Este es un ejercicio del item “comparision” del GRE QUANT.
Debemos prestar atención a ¿qué nos piden comparar?
Debemos comparar, el exceso del mayor valor de “n” sobre el menor valor de “n” (A), con el valor “10” (B)

Para resolver desigualdades con valor absoluto, hay 2 cosas que necesita saber:
Regla # 1 : Si | algo | <K, entonces k < algo <k
Regla # 2 : Si | algo | > K, entonces o bien algo > K o algo <-k
Nota: estas reglas suponen que k es positivo

dado: | 2n + 7 | ≤ 10
En este caso, debemos aplicar la regla # 1 para obtener: -10 ≤ 2n + 7 ≤ 10
Reste 7 de las tres partes: -17 ≤ 2n ≤ 3
Divide las tres partes por 2 para obtener: -8.5 ≤ n ≤ 1,5
Como n es un entero, los posibles valores de n son: -8 , -7, -6, -5, …. 0, 1

La pregunta:
Cantidad A : La diferencia entre los valores máximo y mínimo posibles de n
Cantidad B : 10

obtenemos:
Cantidad A : 1 – ( -8 )
Cantidad B : 10

Evaluar:
Cantidad A : 9
Cantidad B : 10

Respuesta correcta B) 

Clases particulares GRE QUANT and GRE SUBJECT MATH
En grechile.com, ofrecemos Programas para que rindas con ventaja tu GRE QUANT, enfocados en preguntas de alta puntuación.
Clases particulares GRE QUANT and GRE SUBJECT MATH, en todo CHILE.
Reserva con tiempo tus clases.
contacto: claudio hurtado
correo : admin@grechile.com
whatsapp +56999410328
sitio web: www.grechile.com

GRE Quantitative Comparison Questions, solved exercises step by step; clases particulares GRE en Chile, tutor, tutorials, class, course, The units digit of

entrenamieno

 

GRE Quantitative Comparison Questions

x is a positive integer.

Quantity A
Quantity B
The units digit of 6^x
The units digit of 4^{2x}

A) Quantity A is greater.
B) Quantity B is greater.
C) The two quantities are equal.
D) The relationship cannot be determined from the information given.

 

 

 

 

 

Clases particulares GRE QUANT and GRE SUBJECT MATH
En grechile.com, ofrecemos Programas para que rindas con ventaja tu GRE QUANT, enfocados en preguntas de alta puntuación.
Clases particulares GRE QUANT and GRE SUBJECT MATH, en todo CHILE.
Reserva con tiempo tus clases.
contacto: claudio hurtado
correo : admin@grechile.com
whatsapp +56999410328
sitio web: www.grechile.com

 

 

Answer: C

 

Resolución paso a paso:

Este es un ejercicio del item “comparision” del GRE QUANT.
Debemos prestar atención a ¿qué nos piden comparar?
Ojo: a pesar de que en el enunciado hablan de una variable “x”, que se mueve en los valores de los enteros positivos. lo que nos piden comparar, es el valor de la unidad, al desarrollar dos expresiones, una en A y otra en B, en ambas expresiones aparece la variable “x”. Esto es un ejercicio que nos pide “trabajo en la ambigúedad” (no se define un valor fijo para “x”, dado que lo único que se afirma, es que es un entero positivo, esto quiere decir que puede tomar cualquier valor entero positivo).
Además para responder correctamente el alumno debe saber trabajar con potencias y sus propiedades.
No se nos pide comparar “x”, sino la consecuencia de actuar como exponente en una potencia de base entera (6), para ver que resulta en la unidad del número obtenido.

En A, se nos presenta  6^x, debemos ver que ocurre con el valor de la unidad al desarrollar para los distintos valores de exponente entero positivo, haciendo una inspección nos damos cuenta que 6^x, para x=1, es 6 (valor de la unidad 6) , para x=2, es 6*6=..6, es 6 (valor de la unidad), para x=3, es el valor de la unidad de x=2, multiplicado 6, es 6 (valor de la unidad y así sucesivamente.
Conclusión: independiente del valor entero positivo que tome x, el valor de la unidad de 6^x, siempre será 6.

En B, se nos presenta 4^{2x}, debemos ver que ocurre con el valor de la unidad al desarrollar para los distintos valores de exponente entero positivo.
Aplicando una propiedad de potencias, tenemos que    4^{2x}=( 4²)^x= 16^x, para ver el valor de la unidad de 16^x, vasta con analizar cómo se comporta 6^x, este hecho fue analizado en A, es decir estamos en la misma situación de A.

Luego, lo afirmado en A, es igual a lo afirmado en B, ya que en ambos casos, se obtiene un valor único para la unidad, esto es 6.

Respuesta correcta C) 

Clases particulares GRE QUANT and GRE SUBJECT MATH
En grechile.com, ofrecemos Programas para que rindas con ventaja tu GRE QUANT, enfocados en preguntas de alta puntuación.
Clases particulares GRE QUANT and GRE SUBJECT MATH, en todo CHILE.
Reserva con tiempo tus clases.
contacto: claudio hurtado
correo : admin@grechile.com
whatsapp +56999410328
sitio web: www.grechile.com

Exercises solved Data interpretation, GRE QUANT, During how many of the months in which City Y’s average rainfall exceeded 3 inches was City X’s average low temperature greater than or equal to 30 degrees?

average monthly rainfall for cities x and y

average temperature highs and lows for city x

Question 1 During how many of the months in which City Y’s average rainfall exceeded 3 inches was City X’s average low temperature greater than or equal to 30 degrees?
A. One
B. Two
C. Three
D. Four
E. All

Question 2 The “monthly midpoint” is calculated by taking the average (arithmetic mean) of a month’s average high and low. Which of the following is the average monthly midpoint in City X for the 3-month period from July to September?
A. 55.3
B. 60.0
C. 64.7
D. 69.3
E. 74.0

answers  1b   2c

 

Clases particulares GRE QUANT en Chile, reserva tus clases con tiempo
contacto claudio hurtado
correo  admin@grechile.com
sitio web www.grechile.com
whatsapp 569 99410328

Explicacion y desarrollo, lectura de graficos, interprertacion de tablas
Data Interpretation GRE QUANT

Pregunta 1. En primer lugar, mira en el gráfico de barras para averiguar qué meses tuvieron una precipitación media superior a 3 pulgadas y luego aplicar esa información a la tabla de temperatura. Según el gráfico de barras, los únicos meses que tuvieron una precipitación media superior a 3 pulgadas fueron enero, febrero, marzo, octubre, noviembre y diciembre. De acuerdo con el gráfico de líneas, sólo dos de esos meses tuvieron bajas promedio superiores a 30 grados: octubre y noviembre.
Por lo tanto la opción B es correcta.

Pregunta 2. Este es un problema de varios pasos, por lo que debe tomar un paso a la vez. Primero, determine el punto medio mensual para cada mes. La alta en julio es 78 y la baja es 59, por lo que el punto medio mensual es: 78 + 59 = 137 ÷ 2 = 68,5. Del mismo modo, el punto medio de agosto es: 76 + 57 = 133 ÷ 2 = 66,5. El punto medio de septiembre es: 68 + 50 = 118 ÷ 2 = 59. El promedio de los tres puntos medios es: 59 + 66.5 + 68.5 = 194 ÷ 3 = 64.7, opción (C)

Clases particulares GRE QUANT en Chile, reserva tus clases con tiempo
contacto claudio hurtado
correo  admin@grechile.com
sitio web www.grechile.com
whatsapp 569 99410328

15 Health Benefits of the Mediterranean Diet, According to Science (+ How to Get Started / Diet Plan)

Eating plenty of fresh, non-starchy produce is key to the Mediterranean diet. You’ll want to shoot for at least five servings each day, with each serving being approximately one cup of raw produce. Healthy fats are also encouraged – coming from things like olive oil, nuts, fish, and avocado.

More information: https://www.jenreviews.com/mediterranean-diet/

New Master of Gonvile and Caius announced

The next Master of Gonville & Caius will be Dr Pippa Rogerson, Director of Studies in Law at the College.

Dr Rogerson, a Fellow of Caius since 1989 and a member of the University Council, will succeed Professor Sir Alan Fersht when he retires from the post at the end of September 2018.

The Fellows of the College resolved at a meeting on 19 May 2017 to elect Dr Rogerson as the next Master of the College. Her appointment was warmly welcomed by Fellows, students and staff.

Dr Rogerson will make history as the first woman Master of Caius in the 669 years since its foundation as Gonville Hall. Her appointment will bring the number of female Heads of Houses in Cambridge to 11, meaning just over a third of the 31 colleges will be headed by women.

While, as with many ancient institutions, there is complexity in counting the number of Masters, by the College’s measure Dr Rogerson will become the 43rd Master of Caius.

Dr Rogerson said she was “delighted and daunted in equal parts to have been elected Master of Caius”.

She added: “Sir Alan Fersht is a hard act to follow, and I’m extremely fortunate to be part of such a wonderful College with such distinguished colleagues who are so engaged in research and teaching, fantastic undergraduates and graduates and an incredible team of staff.”

Her focus as Master would be on people, she said. “In order to have excellence in education and research we have to choose the best people as students, Fellows and staff, and then provide the environment in which they can thrive and do absolutely their best work.

“I want to continue to use the wealth of the College for its primary purpose in supporting education and research, including ensuring an education at Cambridge is available to everybody who can benefit from it, regardless of where they come from.

“We want to provide the support for everybody to be the best they can be, not just for the three years they are here but on into their lives long after they leave.”

She added: “I am very keen to maintain Caius’ excellent academic tradition – the strength of our teaching and research is absolutely intrinsic to Caius’ identity. But there are so many more opportunities in Cambridge – sporting, social and cultural – that students should use to gain all those skills that make them employable and contribute to society when they leave College.

“Afterwards they maintain those friendships and networks they have built up through their academic and other interests – and that sense of community is what Caians are brilliant at.”

Dr Rogerson has been a Fellow and College Lecturer in Law at Caius since 1989, and Director of Studies in Law at the College since 1990. A University Lecturer in the Faculty of Law at Cambridge since 1989, she was promoted to Senior Lecturer in 2001.

Her predecessor, Professor Fersht, is a world-renowned chemist, who was knighted for his pioneering work on protein science.

 A third year lawyer at Caius, Hephzibah Adeosun, was among many Caius students to praise the appointment of Dr Rogerson. She said: “She’s a legend. Very pleased for her and I know she’ll do an excellent job.”

Brexit: people are angry but looking for compromise, research finds

A new report on public attitudes to the future EU-UK relationship reveals a “striking degree of consensus” that full Single Market access should be retained, while skilled EU migrants – those with a job to come to – should be given entry to the UK labour market in return.

Professor Catherine Barnard and Dr Amy Ludlow, from Cambridge’s Faculty of Law, spent early 2017 canvassing opinion from hundreds of people across the East of England through a series of debates and workshops in schools, community centres and even a prison, as well as gathering views in streets and town squares.

This fieldwork was conducted in locations ranging from the strongly pro-Brexit, including the Lincolnshire town of Boston where the highest Leave vote (75%) was recorded, to Remain strongholds such as the city of Cambridge itself, which voted 73.8% to stay.

The researchers found that when the public were asked to indicate preferences on the big issues of Brexit, many participants wanted full Single Market access with no free movement or payment to the EU – the position commonly associated with Boris Johnson’s claim that the UK can ‘have its cake and eat it’, something which the EU rejects.

However, when people were presented with current viable options – EU membership, European Economic Area (EEA), Customs Union and ‘hard Brexit’ (i.e. non-membership of the Single Market) – they recognised the need for compromise, and reached an overall consensus that a deal closer to the EEA ‘Norway model’ might be best, at least in the short term.    

“The European Economic Area option was consistently seen by Leave and Remain voters alike to be an acceptable compromise that allows limits to freedom of movement and reduces the UK’s financial contribution to the EU. People wanted full access to trade in goods and services with the EU,” said Barnard. 

“Remodelling the UK’s relationship along lines similar to the EEA was frequently described as a ‘rebalancing’ rather than pulling up the drawbridge to the world. There was an almost universal desire among the study’s participants for EU citizens who are economically active or want to study in the UK to be able to continue to come.”

The report, produced as part of the UK in a Changing Europe (UKCE) programme, of which Barnard is a Senior Fellow, also highlights the anger and disappointment people still hold at the conduct of politicians and the media during the referendum campaign.

People on both sides of the debate expressed regret about the sense of division caused by Brexit. Some also reported feeling “embarrassed or awkward” in their relationships with EU nationals. There was also significant anxiety among participants about what might come next, with some describing an “eerie quietness… like the calm before the storm”.

“We found anxiety, but also resentment,” said Barnard. “Many young people, including those in prominent Leave-voting areas, expressed anger at the referendum, and a result they felt they would be living with for the rest of their lives.”    

The researchers also found a serious, often fundamental, lack of knowledge about the EU. Many people struggled to articulate specific examples of the EU’s impact on their lives beyond infamous ‘euromyths’ such as the banning of bendy bananas. Many said they didn’t understand what they were voting for.

The most commonly cited example of a positive EU impact was no mobile phone roaming charges. Some young people also mentioned the arrival of high-street brands such as Spanish company Zara.

In general, however, Barnard and Ludlow found that it was easier for people who voted Leave to provide examples of how they felt the EU had interfered too much than it was for Remain voters to give concrete examples of the EU’s benefit.    

Amy Ludlow said: “A key reason many people gave for voting Remain was inertia, that they saw no good reason to change the status quo. Leave voters could more often give a range of reasons for their vote: from immigration and a perceived erosion of British identity to the promise of additional healthcare funding.”    

The findings will be presented at a public event at Michaelhouse Café in Cambridge on 22 May, where Professor Anand Menon, Director of UKCE, and Dr Angus Armstrong of the National Institute of Economic and Social Research, will join Barnard and Ludlow to talk about ‘Brexit, Boston and migration’

Unravelling and reimagining the UK’s relationship with the EU: Public engagement about Brexit in the East of England

Opinion: Neuralink wants to wire your brain to the internet – what could possibly go wrong?

Neuralink – which is “developing ultra high bandwidth brain-machine interfaces to connect humans and computers” – is probably a bad idea. If you understand the science behind it, and that’s what you wanted to hear, you can stop reading. The Conversation

But this is an absurdly simple narrative to spin about Neuralink and an unhelpful attitude to have when it comes to understanding the role of technology in the world around us, and what we might do about it. It’s easy to be cynical about everything Silicon Valley does, but sometimes it comes up with something so compelling, fascinating and confounding it cannot be dismissed; or embraced uncritically.

Putting aside the hyperbole and hand-wringing that usually follows announcements like this, Neuralink is a massive idea. It may fundamentally alter how we conceive of what it means to be human and how we communicate and interact with our fellow humans (and non-humans). It might even represent the next step in human evolution.

Neurawhat?

But what exactly is Neuralink? If you have time to read a brilliant 36,400-word explainer by genius Tim Urban, then you can do so here. If you don’t, Davide Valeriani has done an excellent summary on The Conversation. However, to borrow a few of Urban’s words, NeuraLink is a “wizard hat for your brain”.

Essentially, Neuralink is a company purchased by Elon Musk, the visionary-in-chief behind Tesla, Space X and Hyperloop. But it’s the company’s product that really matters. Neuralink is developing a “whole brain interface”, essentially a network of tiny electrodes linked to your brain that the company envisions will allow us to communicate wirelessly with the world. It would enable us to share our thoughts, fears, hopes and anxieties without demeaning ourselves with written or spoken language.

One consequence of this is that it would allow us to be connected at the biological level to the internet. But it’s who would be connecting back with us, how, where, why and when that are the real questions.

Through his Tesla and Space X ventures, Musk has already ruffled the feathers of some formidable players; namely, the auto, oil and gas industries, not to mention the military-industrial complex. These are feathers that mere mortals dare not ruffle; but Musk has demonstrated a brilliance, stubborn persistence and a knack for revenue generation (if not always the profitability) that emboldens resolve.

However, unlike Tesla and Space X, Neuralink operates in a field where there aren’t any other major players – for now, at least. But Musk has now fired the starting gun for competitors and, as Urban observes, “an eventual neuro-revolution would disrupt almost every industry”.

Part of the human story

There are a number of technological hurdles between Neuralink and its ultimate goal. There is reason to think they can surmount these; and reason to think they won’t.

While Neuralink may ostensibly be lumped in with other AI/big data companies in its branding and general desire to bring humanity kicking and screaming into a brave new world of their making, what it’s really doing isn’t altogether new. Instead, it’s how it’s going about it that makes Neuralink special – and a potentially major player in the next chapter of the human story.

Depending on who you ask, the human story generally goes like this. First, we discovered fire and developed oral language. We turned oral language into writing, and eventually we found a way to turn it into mechanised printing. After a few centuries, we happened upon this thing called electricity, which gave rise to telephones, radios, TVs and eventually personal computers, smart phones – and ultimately the Juicero.

Over time, phones lost their cords, computers shrunk in size and we figured out ways to make them exponentially more powerful and portable enough to fit in pockets. Eventually, we created virtual realities, and melded our sensate reality with an augmented one.

But if Neuralink were to achieve its goal, it’s hard to predict how this story plays out. The result would be a “whole-brain interface” so complete, frictionless, bio-compatible and powerful that it would feel to users like just another part of their cerebral cortex, limbic and central nervous systems.

A whole-brain interface would give your brain the ability to communicate wirelessly with the cloud, with computers, and with the brains of anyone who has a similar interface in their head. This flow of information between your brain and the outside world would be so easy it would feel the same as your thoughts do right now.

But if that sounds extraordinary, so are the potential problems. First, Neuralink is not like putting an implant in your head designed to manage epileptic seizures, or a pacemaker in your heart. This would be elective surgery on (presumably) healthy people for non-medical purposes. Right there, we’re in a completely different ball park, both legally and ethically.

There seems to be only one person who has done such a thing, and that was a bonkers publicity stunt conducted by a Central American scientist using himself as a research subject. He’s since suffered life threatening complications. Not a ringing endorsement, but not exactly a condemnation of the premise either.

Second, because Neuralink is essentially a communications system there is the small matter of regulation and control. Regardless of where you stand on the whole privacy and surveillance issue (remember Edward Snowden) I cannot imagine a scenario in which there would not be an endless number of governments, advertisers, insurers and marketing folks looking to tap into the very biological core of our cognition to use it as a means of thwarting evildoers and selling you stuff. And what’s not to look forward to with that?

And what if the tech normalises to such a point that it becomes mandatory for future generations to have a whole-brain implant at birth to combat illegal or immoral behaviour (however defined)? This obviously opens up a massive set of questions that go far beyond the technical hurdles that might never be cleared. It nonetheless matters that we think about them now.

Brain security

There’s also the issue of security. If we’ve learned one thing from this era of “smart” everything, it’s that “smart” means exploitable. Whether it’s your fridge, your TV, your car, or your insulin pump, once you connect something to something else you’ve just opened up a means for it to be compromised.

What it really all comes down to is this: across a number of fields at the intersection of law, philosophy, technology and society we are going to need answers to questions no one has yet thought of asking (at least not often enough; and for the right reasons). We have faced, are facing, and will face incredibly complex and overwhelming problems that we may well not like the answers to. But it matters that we ask good questions early and often. If we don’t, they’ll be answered for us.

And so Neuralink is probably a bad idea, but to the first person who fell into a firepit, so was fire. On a long enough time line even the worst ideas need to be reckoned with early on. Now who wants a Juicero?

This article was originally published on The Conversation. Read the original article.

Opinion: We could soon face a robot crimewave … the law needs to be ready

This is where we are at in 2017: sophisticated algorithms are both predicting and helping to solve crimes committed by humans; predicting the outcome of court cases and human rights trials; and helping to do the work done by lawyers in those cases. By 2040, there is even a suggestion that sophisticated robots will be committing a good chunk of all the crime in the world. Just ask the toddler who was run over by a security robot at a California mall last year. The Conversation

How do we make sense of all this? Should we be terrified? Generally unproductive. Should we shrug our shoulders as a society and get back to Netflix? Tempting, but no. Should we start making plans for how we deal with all of this? Absolutely.

Fear of Artificial Intelligence (AI) is a big theme. Technology can be a downright scary thing; particularly when its new, powerful, and comes with lots of question marks. But films like Terminator and shows like Westworld are more than just entertainment, they are a glimpse into the world we might inherit, or at least into how we are conceiving potential futures for ourselves.

Among the many things that must now be considered is what role and function the law will play. Expert opinions differ wildly on the likelihood and imminence of a future where sufficiently advanced robots walk among us, but we must confront the fact that autonomous technology with the capacity to cause harm is already around. Whether it’s a military drone with a full payload, a law enforcement robot exploding to kill a dangerous suspect or something altogether more innocent that causes harm through accident, error, oversight, or good ol’ fashioned stupidity.

There’s a cynical saying in law that “wheres there’s blame, there’s a claim”. But who do we blame when a robot does wrong? This proposition can easily be dismissed as something too abstract to worry about. But let’s not forget that a robot was arrested (and released without charge) for buying drugs; and Tesla Motors was absolved of responsibility by the American National Highway Traffic Safety Administration when a driver was killed in a crash after his Tesla was in autopilot.

While problems like this are certainly peculiar, history has a lot to teach us. For instance, little thought was given to who owned the sky before the Wright Brothers took the Kitty Hawk for a joyride. Time and time again, the law is presented with these novel challenges. And despite initial overreaction, it got there in the end. Simply put: law evolves.

Robot guilt

The role of the law can be defined in many ways, but ultimately it is a system within society for stabilising people’s expectations. If you get mugged, you expect the mugger to be charged with a crime and punished accordingly.

But the law also has expectations of us; we must comply with it to the fullest extent our consciences allow. As humans we can generally do that. We have the capacity to decide whether to speed or obey the speed limit – and so humans are considered by the law to be “legal persons”.

To varying extents, companies are endowed with legal personhood, too. It grants them certain economic and legal rights, but more importantly it also confers responsibilities on them. So, if Company X builds an autonomous machine, then that company has a corresponding legal duty.

The problem arises when the machines themselves can make decisions of their own accord. As impressive as intelligent assistants, Alexa, Siri or Cortana are, they fall far short of the threshold for legal personhood. But what happens when their more advanced descendants begin causing real harm?

A guilty AI mind?

The criminal law has two critical concepts. First, it contains the idea that liability for harm arises whenever harm has been or is likely to be caused by a certain act or omission.

Second, criminal law requires that an accused is culpable for their actions. This is known as a “guilty mind” or mens rea. The idea behind mens rea is to ensure that the accused both completed the action of assaulting someone and had the intention of harming them, or knew harm was a likely consequence of their action.

Blind justice for a AI. Shutterstock

So if an advanced autonomous machine commits a crime of its own accord, how should it be treated by the law? How would a lawyer go about demonstrating the “guilty mind” of a non-human? Can this be done be referring to and adapting existing legal principles?

Take driverless cars. Cars drive on roads and there are regulatory frameworks in place to assure that there is a human behind the wheel (at least to some extent). However, once fully autonomous cars arrive there will need to be extensive adjustments to laws and regulations that account for the new types of interactions that will happen between human and machine on the road.

As AI technology evolves, it will eventually reach a state of sophistication that will allow it to bypass human control. As the bypassing of human control becomes more widespread, then the questions about harm, risk, fault and punishment will become more important. Film, television and literature may dwell on the most extreme examples of “robots gone awry” but the legal realities should not be left to Hollywood.

So can robots commit crime? In short: yes. If a robot kills someone, then it has committed a crime (actus reus), but technically only half a crime, as it would be far harder to determine mens rea. How do we know the robot intended to do what it did?

For now, we are nowhere near the level of building a fully sentient or “conscious” humanoid robot that looks, acts, talks, and thinks like us humans. But even a few short hops in AI research could produce an autonomous machine that could unleash all manner of legal mischief. Financial and discriminatory algorithmic mischief already abounds.

Play along with me; just imagine that a Terminator-calibre AI exists, and that it commits a crime (let’s say murder) then the task is not determining whether it in fact murdered someone; but the extent to which that act satisfies the principle of mens rea.

But what would we need to prove the existence of mens rea? Could we simply cross-examine the AI like we do a human defendant? Maybe, but we would need to go a bit deeper than that and examine the code that made the machine “tick”.

And what would “intent” look like in a machine mind? How would we go about proving an autonomous machine was justified in killing a human in self-defense or the extent of premeditation?

Let’s go even further. After all, we’re not only talking about violent crimes. Imagine a system that could randomly purchase things on the internet using your credit card – and it decided to buy contraband. This isn’t fiction; it has happened. Two London-based artists created a bot that purchased random items off the dark web. And what did it buy? Fake jeans, a baseball cap with a spy camera, a stash can, some Nikes, 200 cigarettes, a set of fire-brigade master keys, a counterfeit Louis Vuitton bag and ten ecstasy pills. Should these artists be liable for what the bot they created bought?

Maybe. But what if the bot “decided” to make the purchases itself?

Robo-jails?

Even if you solve these legal issues, you are still left with the question of punishment. What’s a 30-year jail stretch to an autonomous machine that does not age, grow infirm or miss its loved ones? Unless, of course, it was programmed to “reflect” on its wrongdoing and find a way to rewrite its own code while safely ensconced at Her Majesty’s leisure. And what would building “remorse” into machines say about us as their builders?

Would robot wardens patrol robot jails? Shutterstock

What we are really talking about when we talk about whether or not robots can commit crimes is “emergence” – where a system does something novel and perhaps good but also unforeseeable, which is why it presents such a problem for law.

AI has already helped with emergent concepts in medicine, and we are learning things about the universe with AI systems that even an army of Stephen Hawkings might not reveal.

The hope for AI is that in trying to capture this safe and beneficial emergent behaviour, we can find a parallel solution for ensuring it does not manifest itself in illegal, unethical, or downright dangerous ways.

At present, however, we are systematically incapable of guaranteeing human rights on a global scale, so I can’t help but wonder how ready we are for the prospect of robot crime given that we already struggle mightily to contain that done by humans.

Christopher Markou, PhD Candidate, Faculty of Law, University of Cambridge

This article was originally published on The Conversation. Read the original article.

Harvard Law School to accept GRE scores

Harvard Law School will be accepting GRE scores for admission to their three year Juris Doctor programme.

The announcement was made on Wednesday, March 8. This pilot project is an outcome of a Harvard Law School study carried out in 2016 evaluating the GRE scores of previous students who had taken both GRE and LSAT. The study aimed to determine the validity of GRE as a predictor of first-year academic performance at the Law School. Statistics proved that GRE was “an equally valid predictor” as LSAT. The study was carried out in accordance with American Bar Association (ABA) Standards for Legal Education.

According to the announcement, this step is an attempt to diversify the community in terms of academic background, country of origin, and financial circumstances. “Harvard Law School is continually working to eliminate barriers as we search for the most talented candidates for law and leadership,” said HLS Dean Martha Minow. She added, “For these students, international students, multidisciplinary scholars, and joint-degree students, the GRE is a familiar and accessible test, and using it is a great way to reach candidates not only for law school, but for tackling the issues and opportunities society will be facing.”

 

Admissions to law schools in USA, Canada and a few other countries are done through Law School Admission Test (LSAT) which is controlled by Law School Admission Council (LSAC).

 

Stay tuned to www.studyabroad.careers360.com for more news and updates on Resume


Clases particulares GMAT QUANT y GRE QUANT. Nuestros cursos Intensivo (duración 3 meses) y Normal (duración 6 meses), están dirigido especialmente a profesionales del área humanista: abogado, periodista, publicista, etc. Dichos cursos parten de cero. Además ofrecemos Curso Super Fast (duración 1 semana), Super Intensivo ( duración 1 mes). Así, si eres un profesional y quieres aplicar a un postgrado en una universidad importante a nivel internacional, tenemos o cofeccionamos el curso GMAT QUANT y GRE QUANT a tu medida. Contacto claudio hurtado, whatsapp +56999410328, clasesgmatchile@gmail.com, www.grechile.com

————————————————————————————————————————————————-

 

Learn the techniques high score GRE MATH, to solve exercises as above, with claudio hurtado.

1 Comment
clases gre math en chile

At 19:45 pm, it runs through town A towards city B, a motorcycle with a constant speed of x km / h, at the same moment by B towards the city, passing a car at a constant speed y km / h. If the city A is “z” kilometers from the city B:

a) what time they cross?

b) how far from B vehicles crossing it occur?

creation original claudio hurtado maturana coach GMAT QUANTITATIVE
GMAT PARTE MATEMÁTICAS clases particulares clases a distancia clases grupales por claudio hurtado GRE PARTE MATEMÁTICAS, SAT PARTE MATEMÁTICAS
whatsapp +569 99410328
correo clasesgmatchile@gmail.com
sitio web www.gmatchile.cl
Avenida Hernando de Aguirre 128 Of 904 Metro Tobalaba

Fracciones, diagrama de árbol, resto, multiplo aplicación concepto, acotamiento técnica

1 Comment
números quebrados

clases particulares tiene los 2/5 de sus alumnos de enseñanza superior, los 2/7 del resto de sus alumnos de estudios de postgrado y 1/5 del nuevo resto son alumnos de enseñanza básica. Considerando que el total de los alumnos de clasesparticulares.cl está entre 600 y 700 alumnos. ¿Cuántos alumnos de clasesparticulares.cl son estudiantes de enseñanza básica?

Creación original claudio hurtado, admin@grechile.com, www.grechile.com, whatsapp +569 99410328, Hernando de Aguirre 128 Of 904 Metro Tobalaba.

 

Resolveremos el siguiente problema

Los 2/5 de los ingresos de una comunidad de vecinos se emplean combustible, 1/8 se emplea en electricidad, 1/12 en la recogida de basuras, 1/4 en mantenimiento del edificio y el resto se emplea en limpieza.

¿Qué fracción de los ingresos se emplea en limpieza?

 

 

 

Programa Nuevos Emprendedores 2013 España y México

emprender
emprender

emprendimiento

EmprendeUC, como representante de RedEmprendia, está necesitando comunicarse con empresarios de distintos sectores para ubicar a jóvenes emprendedores y profesionales de las universidades de España y México que son parte de RedEmprendia, quienes han ganado un cupo en el Programa Nuevos Emprendedores 2013, que les permite por 2 o 3 meses hacer prácticas, sin cobrar, en empresas chilenas. Si puedes dar un cupo de práctica a uno de nuestros emprendedores RedEmprendia o quieres conocer más de esta iniciativa, comunícate al mail naogno@uc.cl.

Beca Postula a Santander Universities – Babson Entrepreneurship & Innovation Symposium hasta el 13 de junio

1 Comment
ayuda soporte

 

ayuda soporte

beca

La Universidad Católica, como socia de RedEmprendia, invita a profesionales, académicos y responsables en temas de emprendimiento, a postular a una beca para asistir al Santander Universities – Babson Entrepreneurship & Innovation Symposium for RedEmprendia Fellows, que se celebrará en el Babson College, del 7 al 12 de septiembre de 2014.

La BECA considera la matrícula, el alojamiento y la manutención, de la persona que salga seleccionada, teniendo únicamente que asumir éste los costes derivados del desplazamiento (pasajes aéreos hasta el lugar).

 El curso se impartirá íntegramente en inglés,por lo que los asistentes deben dominar este idioma.

POSTULACIONES HASTA EL VIERNES 13 DE JUNIO DE 2014

Requisitos: (enviar a contacto@emprendeuc.cl)

– CV actualizado en inglés.

– Carta de motivación en inglés (máx media plana). 

 

Una comisión, integrada por académicos y profesionales UC evaluará a los candidatos y comunicará al seleccionado el 20 DE JUNIO

Video ejercicio GRE SUBJECT MATH

camara, lente

GRECHILE.COM presenta vídeo de ejercicios desarrollados de GRE SUBJECT MATH, tema cálculo infinitecimal, límite concepto y aplicación:

http://youtu.be/9t1DCLvWb8w
La segunda parte de la ^ ^ fácil ^ ^ pregunta Gre, resuelta por Vasilis Bakás para GCSE, OCR, SAT, GRE, exámenes del IB, A Level, exámenes de grado, tutores de Londres, especialistas en matemáticas, física, economía, Berkeley, Cambridge, Oxford, las universidades de Edimburgo, análisis, álgebra, ecuaciones diferenciales, geometría diferencial, matemática aplicada, estadística, probabilidad, teoría de números, combinatoria, matemáticas financieras, Microeconomía, macroeconomía, mecánica, geometría, lógica, Real y análisis complejo, concursos de matemáticas, putnam, OMI, teoría de juegos, topología, geometría analítica, teoría de grupos, matemáticas discretas, matemáticas difíciles problemas

 

Qué es el GRE SUBJECT TEST MATH?

1 Comment
entrenamieno
entrenamieno

educación

Según la web oficial del GRE SUBJECT TEST MATH: ETS.ORG, el contenido de la prueba se divide de la siguiente manera:
50% cálculo,
25% álgebra,
Temas adicionales de 25%.
Basados en el material revisado en base a TEST oficiales del GRE SUBJECT MATH TEST, la prueba tiene el siguiente desglose:

Teoría de la función básica: 15-20 preguntas. Esto es esencialmente high School secundaria material. ¿Recuerdas la fórmula de ecuación cuadrática? ¿Por qué esos molestos identidades trigonométricas? Usted puede resolver o aproximar las soluciones a algunas ecuaciones funcionales básicas (por ejemplo puedes estadio las dos soluciones reales a e ^ x = x ^ 2 + x + 1?).

Aparte de las identidades trigonométricas (que aún no recuerdo), probablemente no necesitará revisar cualquiera de estos materiales.
Cálculo Variable uno computacional: 15-20 preguntas. Se trata en su mayoría AB/BC Calc material. ¿Te acuerdas de los derivados y los derivados de las funciones racionales, trigonométricas funciones y sus inversas, exponetials y los registros? ¿Recuerdas esos problemas caída de escalera (tarifas relacionadas)? ¿Recuerdas el error con destino a series de Taylor?

Para mí, la sorpresa más grande fue el énfasis en aproximación. Recordando a todos los métodos diferenciales para las figuras ballparking (e.g. estimación 5^(2.001) – 25) va a ser importante. Yo recomendaría ir a través de algunos libros de revisión para cálculo AB/BC. ADVERTENCIA: Cuando esté revisando este material, la velocidad de cálculo es clave. Cometí el error de la lectura a través de las cosas, pensando “Sí, sí. Recuerdo cómo hacer eso,”y nunca molesta realmente realizar los cálculos pertinentes. Pero como he mencionado en la sección general, la velocidad es todo. Claro, dado 2 minutos usted podría averiguar el derivado de la sin^{-1}(x). Pero necesitará saber la respuesta inmediatamente; 2 minutos es mucho tiempo para gastar en tal cosa.
Álgebra lineal: 10-15 preguntas. ¿Se puede resolver un sistema de ecuaciones lineales? ¿Lo más importante, se puede hacer rápidamente? (Tiempo: Cuánto tiempo tarda para resolver 3 x + 4y + 5z = 1, 2 x + z = 2, 6 x + 7y + 3z = 8. Si tarda más de 2 minutos y 35 segundos, entonces se está quedando atrás: usted necesitará hacer otra pregunta en menos tiempo para completar el examen.) ¿Usted puede calcular rápidamente los determinantes? ¿Usted puede calcular rápidamente los polinomios característicos? ¿Usted puede calcular rápidamente filas? Dado un conjunto de cinco vectores en R ^ 3, ¿puede determinar rápidamente qué subconjuntos son linealmente dependientes?

Creo que, tanto como la prueba como un todo, la capacidad de calcular rápidamente es clave para esta porción del examen. Personalmente he encontrado las preguntas de álgebra lineal para ser computacionalmente más intensivo: en dos de las pruebas que tomé, hubo preguntas que requieren que tomes el determinante de una matriz 4 x 4 como un paso intermedio. (Concedido, las matrices involucradas tenían entradas en [0,10); pero no eran particularmente escasas.) Te recomiendo realizar muchos cálculos mientras practicaba para esta parte del examen. Ser capaz de multiplicar matrices, tomar sus determinantes, realizar eliminación gaussiana, hacer Gram-Schmidt, etc..

 

Calculo multivariable: 3-5 preguntas. La prueba es muy predecible en esta parte. Seguramente habrá un problema de optimización de Lagrange. Habrá uno o dos problemas básicos que implican fáciles integrales o derivadas parciales. Seguramente habrá un problema integral de línea; Seguramente será una aplicación del Teorema fundamental multivariable. Seguramente habrá un problema integral superficial; Seguramente será una aplicación del Teorema de Smith.

No pasaría mucho tiempo estudiando para esta porción del examen, ya que el material es predecible y constituye una porción muy pequeña de la prueba. Asegúrate de que te acuerdas de cómo evaluar integrales básicas y aplicar los resultados mencionados anteriormente; Entonces usted debería estar bien.
Métodos de Conteo y probabilidad: 3-5 preguntas. Generalmente hay un par de preguntas para comprobar si sabes algunas definiciones de teoría de la probabilidad (no). ¿Puedes definir la varianza? ¿Desviación estándar? ¿Usted puede calcular estas cosas en una cantidad razonable de tiempo?

También hay unas cuantas preguntas de probabilidad discretas/contar. Por ejemplo, tendrás que encontrar una fórmula cerrada por alguna suma horrible con poderes de coeficientes binomiales. Es probable que también tendrás que calcular explícitamente (o estimación) algunos porcentajes en problemas discretos. (Por ejemplo le doy la vuelta 100 monedas. Aproximadamente ¿cuál es la probabilidad de que más de 70 de ellos apareció cabezas?)

 

Análisis complejo: 1-2 preguntas. Casi sin falta, hay una integral o dos que debe resolver mediante el uso de contornos. Si recuerdas el cálculo de residuos y del Teorema de Cauchy, entonces usted debería estar bien.
Otros materiales: 4-6 preguntas. Casi siempre hay una pregunta de topología general (por ejemplo hay conjuntos clopen no triviales en un espacio de Hausdorff?). Generalmente, sin embargo, se proporciona la definición pertinente y la cuestión se reduce a una lógica lápiz empujando. A menudo hay una pregunta o dos acerca de análisis real en una sola variable (por ejemplo aquí están algunos hechos al azar sobre una función diferenciable. Debe definirlo?) Generalmente hay dos o tres preguntas sobre basic teoría del número / teoría del grupo. ¿Cuántos grupos abelianos de orden 156 existen? ¿Cuál es el máximo común divisor de 1237 y 5329? A veces tienes que trazar su camino a través de un pseudocódigo para un algoritmo inane. Tendrás que ser capaz de descubrir que los rendimientos de diagrama de cortar y pegar un toro.

Una vez más, es probablemente no vale la pena gastar mucho tiempo preparándose para esta parte del examen. El material no es muy predecibles y hay algunos puntos que se pueden obtener. Si sabes la respuesta, muy bien; Pero si no lo haces, no hay que preocuparse. Pasar a otro diferente.

 

En general, permítanme reiterar mi consejo principal: el examen del tema es una especie de “calcular primero, luego pensar” del examen. Prácticamente no hay matemática pura es probada. Puedes olvidarte de álgebra homológica, no necesitas cualquier topología algebraica se puede establecer a un lado la geometría algebraica, puede ignorar Galois, usted puede abstenerse Lebesgue, usted puede evitar Álgebra conmutativa, puedes dormir en tu clase de teoría de la representación, puedes dejar de estudiar espacios de Hilbert, etc.. Incluso cuando se trata del material probado, teoría ocupa el segundo lugar. ¿Entiendes la versión general (formas diferenciales) del Teorema de Stokes; muy bien, pero usted no necesita, ni tendrá que demostrar el teorema del valor medio tendrá que entender por qué el teorema de la fila-nulidad sostiene.

Pero tendrá que ser capaz de calcular y calcular rápidamente. Por esta razón es fundamental que al estudiar para este examen, en realidad forzar a pasar por el infierno computacional necesario para resolver problemas elementales. No sólo confianza que usted puede calcular la inversa de la matriz; hacerlo y tiempo para que sepas cómo rápidamente usted puede realizar el cómputo. Por encima de todo, es importante poder realizar rápidamente y con precisión los cálculos que cosas como Wolfram Alpha, MatLab, Mathematica, etc. normalmente ahorrar de hacer.

Hola Chile!

1 Comment
curso GRE grupal

Bienvenido a GRECHILE.COM

 

En GRECHILE.COM Claudio Hurtado exdocente UC y su staf de docentes imparten clases para preparar tu GRE GENERAL TEST MATH tu GRE SUBJECT TEST MATH.

 

Para rendir con ventaja tu GRE, grechile.com desarrolla cursos a traves de clases particulares en tu domicilio o tu oficina y también cursos para grupos de 6 alumnos en nuestras oficinas a pasos del metro tobalaba.

 

Reserva con tiempo tus clases,

 

 

Contacto claudio hurtado
Correo admin@grechile.com
Teléfono 56999410328
Sitio Web www.grechile.com

 

 

 

elcome to WordPress. This is your first post. Edit or delete it, then start blogging!